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Abstract

Two methods are developed to average V and I Stokes parameters over
a circular sensor aperture collecting light scattered from an optically active
sphere. One method uses a two-dimensional numerical integration of Bohren’s
theory in scalar form, which explicitly shows the connection with Mueller ma-
trix elements. The second method uses expansions of vector spherical har-
monics in Bohren’s theory to integrate over apertures of any size without
convergence checks since numerical integration is avoided. Equations simpli-
fying the analytical results for 4π scattering are obtained. Sample computa-
tions of average Stokes parameters are performed with both methods, and
agreement to six decimal places is obtained.
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1. Introduction

The presence of chiral molecules in biological materials often makes these
materials optically active: i.e., characterized by different complex indices of
refraction for right and left circularly polarized light. A material with dif-
ferences in the real part of the refractive indices is referred to as circularly
birefringent, and a material with differences in the imaginary part is referred
to as circularly dichroic [1]. Many optically active materials exhibit both
circular birefringence (i.e., optical rotation) and circular dichroism.

Early laser light scattering research in the area of optically active particles
includes the experimental measurements of Holzwarth et al [2] in the 1970s,
who used an application of Mie theory developed by Gordon [3] to simu-
late scattering from spherical microorganisms. In the 1990s, measurements
of Mueller matrix elements for light scattering from nonspherical microor-
ganisms have been reported by Lofftus et al [4] and by Bronk et al [5], who
also performed realistic light scattering calculations. These results provide
evidence that laser-based biosensors can detect and characterize biological
organisms in water or the atmosphere if experimental measurements are sup-
ported by realistic simulations.

Exact theories of light scattering from optically active particles were first
given by Bohren, who gave correct solutions for spheres [1,6], spherical shells
[7], and cylinders [8]. The theory for layered cylinders was later given by
Kluskens and Newman [9], and the theory for spheroids was given most re-
cently by Cooray and Ciric [10]. These theories provide algorithms for scat-
tering in a single direction. Two Stokes parameters, referred to here as V Stokes

and IStokes, can be calculated as functions of the scattering direction, and the
degree of circular polarization is the ratio of these Stokes parameters.

In earlier work [11], two of us (Rosen and Pendleton) applied Bohren’s scat-
tering theory in the first simulation of scattering from optically active spheres
into sensor apertures. The experimental configurations considered in that
work [11] are characterized by the presence of a sensor with a circular aper-
ture. The assumption is that all light scattered into the solid angle inter-
cepted by the circular aperture is focused onto the sensor. This means that
we obtain realistic simulations of the measured signals not by computing the
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Stokes parameters for a single direction but by obtaining the average of each
Stokes parameter over the aperture solid angle. Our earlier paper [11] very
briefly outlined the theory but emphasized a discussion of computational re-
sults, omitting any discussion of the algorithm used for the computations.
To provide a better basis for future computations of this type, we discuss
the theory of two relevant algorithms here. It is assumed that most readers
of this article will be interested in developing computer programs for simu-
lation of experiments, so we have taken care to give results allowing efficient
computation.

The earlier computations [11] were performed with a numerical integration
over the aperture solid angle. We developed this method by adapting a two-
dimensional Legendre-Gaussian numerical integration algorithm originally
designed by Pierce [12] for integration over a circle. The advantage of this
approach over less systematic techniques is that it gives very precise and
efficient results, because the location of the grid points in the aperture solid
angle is optimized. A succinct description of the method is given in section
3. A computer program based on this method was developed and run on
a personal computer, giving the computational results reported earlier [11].
This numerical integration method is computationally simple, but the results
must be checked for convergence; i.e., the computation must be repeated with
an increasing number of points in the computational grid until convergence is
obtained. Also, this method cannot treat aperture solid angles approaching
2π steradians.

To overcome these limitations of the numerical integration method, we de-
veloped a second method to treat any aperture solid angle without conver-
gence checks. This method, which does not use any numerical integration, is
referred to here as the analytical method. Explicit expressions for the two av-
erage Stokes parameters are given that describe the scattering of a wave from
an optically active sphere into an aperture located in any specified direction
and intercepting a solid angle of any size.

The analytical method is applied here to optically active spheres for the first
time. The averaging of IStokes is an easy extension of an approach developed
for Mie scattering into apertures by Chylek [13], Wiscombe and Chylek [14],
Chu and Robinson [15], Pendleton [16,17], and Son, Farmer, and Giel [18,19].
The averaging of V Stokes with this method is new and is the aspect of this
report most likely to appeal to theorists.

The theory given in these last five references used the notation of Jackson
[20]. We originally developed the theory given here using Jackson’s notation
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but rewrote it using notation that is more standard in light scattering [1]
to interface with Bohren’s theory for spheres. This choice of notation should
allow easy application to other particle shapes for which scattering solutions
are known.

Both the numerical integration and analytical methods can treat an incident
wave that is linearly polarized, randomly polarized, or unpolarized. Mathe-
matically, a randomly polarized wave is equivalent to an unpolarized wave,
so these results are referred to here as unpolarized.

The objectives of the numerical integration and analytical methods are the
same, but the approaches are so different that it is surprising that the two
methods give results that agree to better than six decimal places. This agree-
ment allows one to have confidence in the precision of these methods, and
the availability of two methods allows one to apply the more appropriate to
a particular situation.

A computer program based on the analytical method is more computation-
ally intensive. Such a computer program is more difficult to write and requires
more computer time for small apertures than would a program for the nu-
merical integration method. The advantage of the analytical method is that
it can treat any aperture size without convergence checks.

It is hoped that application of these methods will stimulate the develop-
ment of realistic simulations and new experimental techniques based on light
scattering.
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2. Basic Definitions

2.1 Nondimensional Stokes Parameters and the Effective Degree
of Circular Polarization

For computational convenience, we define nondimensional Stokes parameters
V Stokes and IStokes as

V Stokes ≡ k2r2 (IR − IL)

Iinc
, (1a)

IStokes ≡ k2r2 (IR + IL)

Iinc
, (1b)

where IR and IL are the irradiances of the right and left circularly polar-
ized components of the scattered light, Iinc is the irradiance of the incident
electromagnetic wave, and k = 2π/λ is the wave number in the medium sur-
rounding the sphere where the wavelength is λ. In the far field where IR and
IL are inversely proportional to k2r2, these Stokes parameters are functions
of scattering direction only and are not functions of r, the distance from the
sphere’s center to the point where the Stokes parameters are measured.

We obtain the average Stokes parameters, 〈V Stokes〉 and 〈IStokes〉, by averag-
ing the Stokes parameters over the sensor aperture solid angle ∆Ω with the
expression

〈f〉 ≡ 1

∆Ω

∫
∆Ω

dΩf, (2a)

and the effective degree of circular polarization for scattering into the solid
angle ∆Ω is then defined to be the ratio of these average Stokes parameters,

P effective ≡ 〈V
Stokes〉

〈IStokes〉 . (2b)

This method requires that two electronic signals be measured. One of these
signals is proportional to the radiant power P V = (Iinc∆Ω/k2)〈V Stokes〉 and
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the other is proportional to P I = (Iinc∆Ω/k2)〈IStokes〉. If the electronic re-
sponse function of the system is defined to be the ratio of these two electronic
signals, then the electronic response function is independent of Iinc and turns
out to be equal to P effective , the effective degree of circular polarization.

In bulk material irradiated by a linearly polarized beam, IR and IL of the
transmitted wave are different only if the material is circularly dichroic. The
idea motivating this research was to extend this concept from bulk to a single
particle scattering into a sensor aperture so that a nonzero value of P effective

would indicate the presence of an optically active particle. In our earlier work
[11], the occurrence of a nonzero value of P effective for an optically inactive
particle was defined to be a “false” signal of optical activity. We claimed [11]
that no false signals could occur for some aperture locations and identified
these aperture locations. Here, we prove this claim for both the numerical
and analytical methods.

2.2 The Coordinate Systems and Euler Angles

The development of theory for scattering into arbitrarily located apertures
is facilitated by the introduction of an aperture coordinate system located
with respect to the beam system by Euler angles.

The convention in Mie theory, followed by Bohren in his theory of optical
activity, is that an (x, y, z) Cartesian coordinate system is located with the
origin at the center of the sphere, and the z-axis extends in the direction
of incident wave propagation. If the incident wave is linearly polarized, the
x-axis extends in the direction of the incident electrical field. The spherical
system associated with the (x, y, z) Cartesian system is the (r, θ, φ) system
with basis unit vectors (r̂, θ̂, φ̂). To perform the integration over the aperture
solid angle ∆Ω, we introduce a second coordinate system (xA, yA, zA) with
the same origin, but with orientation determined by the center of the aperture
solid angle such that the zA-axis extends through the center of the aperture.
In the angular momentum literature, the convention is to use superscript
primes on the second coordinate system. Here, the primes are replaced by
A (for aperture). The two systems have the same origin, and the relative
orientations are defined by Euler angles α, β, and γ as commonly used in the
quantum theory of angular momentum [21,22]. The connection between the
beam coordinates (x, y, z) and the aperture coordinates (xA, yA, zA) is given
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by the matrix equation 
xA

yA

zA

 = R(αβγ)


x

y

z

 , (3a)

where

R(αβγ) = Rz(γ)Ry(β)Rz(α), (3b)

Rz(α) ≡


cosα sinα 0

− sinα cosα 0

0 0 1

 , (3c)

Ry(β) ≡


cos β 0 − sin β

0 1 0

sin β 0 cos β

 . (3d)

The matrix Rz(γ) is obtained by replacement of α by γ in equation (3c). The
Euler angles α and β are the φ and θ angles describing the direction of the zA-
axis (through the center of the aperture) as measured in the (x, y, z) system.
For a circular aperture, the light scattered into the aperture is independent of
the third Euler angle γ, which is a rotation about the zA-axis. A superscript
A means that the variables (r, θ, φ) and basis vectors (r̂, θ̂, φ̂) of the spherical
beam system are to be replaced by the variables (r, θA, φA) and basis vectors

(r̂, θ̂
A
, φ̂

A
) of the aperture system. For a circular aperture centered on the zA-

axis, setting dΩ = sin θA dθA dφA with 0 ≤ φA ≤ 2π and θAmin ≤ θA ≤ θAmax

gives the integration over the aperture, where θAmax defines the outside edge of
the aperture and θAmin defines the inside edge of the aperture. The solid angle
with θA ≤ θAmin is covered by a concentric “beam stop” or “beam block”
so that ∆Ω = 2π(cos θAmin − cos θAmax). As the name suggests, a beam stop
is usually used to stop unscattered light of the incident laser beam from
irradiating the sensor when the sensor aperture extends into the beam.
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3. Numerical Integration of Stokes Parameters

In the “far-field approximation,” the scattered field is approximately trans-
verse and may be written as E = Eθθ̂ + Eφφ̂. The irradiances of the right
and left circularly polarized components of the scattered light are obtained
with the relations IR/Iinc = ER · E∗R/(Einc)2 and IL/Iinc = EL · E∗L/(Einc)2,
where ER = (Eθ + iEφ)/

√
2, EL = (Eθ− iEφ)/

√
2, and Einc is the magnitude

of the incident electrical field. The Stokes parameters defined in equation (1)
can then be expressed as

V Stokes = k2r2 Im(2EθE
∗
φ)

(Einc)2
, (4a)

IStokes = k2r2 [|Eθ|2 + |Eφ|2]

(Einc)2
. (4b)

3.1 Linearly Polarized Incident Wave

Using the exp(−iωt) convention for the assumed monochromatic time de-
pendence, we can represent the linearly polarized incident wave described
above as Einc = x̂Einc exp(ikz), and Bohren [1] obtained the solution for the
electrical field scattered from an optically active sphere as a function of the
vector spherical harmonics M(3)

σmn and N(3)
σmn. The superscript (3) on these

vector spherical harmonics indicates that the radial function is h(1)
n (kr), a

spherical Hankel function.

Bohren expressed his solution for the scattered electrical field as

E = Einc
∞∑
n=1

in
(2n+ 1)

n(n+ 1)

[
(ian)N

(3)
e1n + (−idn)N

(3)
o1n + cnM

(3)
e1n + (−bn)M

(3)
o1n

]
. (5)

The coefficients an and bn reduce to the Mie coefficients with the same names
when there is no optical activity. For an optically active sphere, dn = −cn,
and when there is no optical activity, dn = −cn = 0.
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In the far-field approximation where h(1)
n (kr) → (−i)n+1 exp(ikr)

kr
, the compo-

nents of the scattered field E may be expressed in standard form as Eθ

−Eφ

 = Einc
exp ikr

−ikr

 S2 S3

S4 S1

 cosφ

sinφ

 , (6a)

where the 2 × 2 matrix is the amplitude scattering matrix with elements
Sk (k = 1 to 4) [1,23]. For an optically active sphere, Bohren identified the
scattering matrix elements as

S1 =
∞∑
n=1

2n+ 1

n(n+ 1)
(anπn + bnτn), (6b)

S2 =
∞∑
n=1

2n+ 1

n(n+ 1)
(anτn + bnπn), (6c)

S3 =
∞∑
n=1

2n+ 1

n(n+ 1)
(cnπn − dnτn), (6d)

S4 =
∞∑
n=1

2n+ 1

n(n+ 1)
(dnπn − cnτn), (6e)

where πn and τn are functions of cos θ that are defined in Mie theory [1,23]
(see app A). Since dn = −cn for optically active spheres, it is found that
S4 = −S3. For spheres that are not optically active, S1 and S2 become the
functions of the same name in Mie theory and S4 = −S3 = 0. Substituting
equation (6a) into equation (4a) gives

V Stokes = S41 + S42 cos(2φ) + S43 sin(2φ), (7a)

where S41, S42, and S43 are Mueller matrices defined as

S41 ≡ Im(S1S
∗
3 − S2S

∗
4), (7b)

S42 ≡ Im(−S1S
∗
3 − S2S

∗
4), (7c)

S43 ≡ Im(S1S
∗
2 − S3S

∗
4). (7d)

The approach used earlier [11] was to see if measurements of 〈V Stokes〉 6= 0
could be used to indicate the presence of an optically active particle. Then, for
spheres with no optical activity, it would be required that 〈V Stokes〉 = 0. For
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optically inactive spheres, S41 = S42 = 0 but S43 6= 0 in general. However,
we show below that if α = 0 or π/2, then 〈S43 sin(2φ)〉 = 0. The result
is that 〈V Stokes〉 = 0 for optically inactive spheres when the aperture is
centered in the x-z plane (α = 0) or the y-z plane (α = π/2). These are the
preferred locations to center the aperture if it is considered desirable to have
〈V Stokes〉 = 0 for a sphere with no optical activity, i.e., no false signal.

Substituting equation (6a) into equation (4b) gives

IStokes = S11 + S12 cos(2φ) + S13 sin(2φ), (8a)

where S11, S12, and S13 are Mueller matrix elements defined as

S11 ≡
1

2
(|S1|2 + |S2|2 + |S3|2 + |S4|2), (8b)

S12 ≡
1

2
(−|S1|2 + |S2|2 − |S3|2 + |S4|2), (8c)

S13 ≡ Re(S1S
∗
4 + S2S

∗
3). (8d)

It is necessary to compute cos(2φ) and sin(2φ) for each point on the grid.
We do this by rewriting equation (3a) as


v1

v2

v3

 ≡


sin θ cosφ

sin θ sinφ

cos θ

 = [R(αβγ)]−1


sin θA cosφA

sin θA sinφA

cos θA

 , (9)

and recognizing that cos(2φ) = [(v1)2 − (v2)2]/[(v1)2 + (v2)2]. The other re-
quired expression is sin(2φ) = 2v1v2/[(v1)2 + (v2)2]. This expression can be
used with equation (8) to show analytically that if α = 0 or π/2, then
〈V Stokes〉 = 〈S43 sin(2φ)〉 = 0 for a sphere with no optical activity.

Equation (2a) will now be adapted for numerical integration. A differential
element of area on the flat circular aperture surface is dAA = ρA dρA dφA =
(zA)2dΩ/ cos3 θA so that

〈f〉 ≡ 1

∆Ω(zA)2

∫ ∫
dAAF, (10)

where F = f(cos θA)3. The Legendre-Gaussian numerical integration scheme
of Pierce gives the algorithm for integrating some function F over a planar
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annulus (i.e., the area between two concentric circles), and the solution to
these integrals may be expressed as

∫ ∫
dAAF = AA

∑
i

∑
j

wijFij, (11)

where the area of the annulus is AA = π[ρ2
max − ρ2

min]. The wij are weighting
numbers normalized so that

∑
i

∑
j wij = 1, and the Fij are the values of

F at the grid points specified by Pierce’s algorithm. The grid points are on
concentric circles in the annulus, with the i index identifying the circles and
the j index identifying the points on a particular circle. Each circle has the
same number of grid points, 4nc, where nc ≡ the number of circles, so the total
number of grid points is 4(nc)

2. Computations necessary for determining the
point locations and the weights were done by Lowan, Davids, and Levenson
[24]. The result is that

〈f〉 =
π

∆Ω

(
tan2 θAmax − tan2 θAmin

)∑
i

∑
j

wij cos3 θAi fij. (12)

This expression was used to compute 〈V Stokes〉 and 〈IStokes〉, with equations
(7a) and (8a) used to compute V Stokes and IStokes at the grid points. The
number of grid points required for convergence becomes larger if the scat-
tering particle’s diameter is increased, because the distribution of scattered
light becomes more complex for larger particles.

3.2 Unpolarized Incident Wave

To obtain the integrands for an unpolarized incident wave most easily, we
average equations (7a) and (8a) with respect to φ over the interval 0 < φ <
2π, producing (

V Stokes
)U

= S41, (13a)(
IStokes

)U
= S11. (13b)

These integrands can be used in equation (11) to obtain 〈(V Stokes)U〉 and
〈(IStokes)U〉. Equation (7b) shows that S41 = 0 if S3 = S4 = 0. This means
that there is no false signal for any aperture position when the incident wave
is unpolarized.
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4. Analytical Integration of Stokes Parameters

4.1 Linearly Polarized Incident Wave

The initial step in developing the analytical theory to be given here is to
rewrite equations (4) in vector form as

V Stokes = k2r2(−i)r̂ · (E× E∗)/(Einc)
2, (14a)

IStokes = k2r2(E · E∗)/(Einc)2. (14b)

Equation (5) can be substituted directly into equations (14) if scattering
into an aperture centered on the beam axis is the only aperture location of
interest. Since we are interested in computing 〈V Stokes〉 and 〈IStokes〉 for any
desired aperture location, it is necessary to obtain expansions for Mσ1n and
Nσ1n as a linear combination of vector spherical harmonics in the aperture
system. Such an expansion has previously been given [16] for Xnm, the vector
spherical harmonic used by Jackson [20], and this expansion is used here to
obtain expansions for Mσ1n and Nσ1n.

The theory given here is simplified by the introduction of complex vector
spherical harmonics

M
(3)

mn ≡M
(3)

emn + iM
(3)

omn, (15a)

N
(3)

mn ≡ N
(3)

emn + iN
(3)

omn, (15b)

where
M

(3)

σmn ≡ AmnM
(3)
σmn, (16a)

N
(3)

σmn ≡ AmnN
(3)
σmn, (16b)

and

Amn ≡
√√√√(2n+ 1)(n−m)!

2(n+m)!
(16c)
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is the normalizing factor for Legendre functions. The vector spherical har-
monics of the beam system can now be written as a linear combination of
the complex vector spherical harmonics of the aperture system. A derivation
of this expansion for Mσ1n is outlined in appendix B, and the expansion of
Mσ1n may be written as

M
(3)
σ1n =

n∑
m=−n

fσmnM
(3)A

mn , (17a)

where a superscript A on vector spherical harmonics indicates the use of the
aperture system variables and basis vectors (see sect. 2.2). Operating on both
sides of equation (16a) with ((1/k)5×) then gives

N
(3)
σ1n =

n∑
m=−n

fσmnN
(3)A

mn , (17b)

where the matrix elements femn and fomn are defined by the matrix equation

(
femn

fomn

)
≡ 2

(2n+ 1)
(−1)m+1 exp(imγ)

[
πnm(cos β)

(
i sinα

−i cosα

)
+ τnm(cos β)

(
cosα

sinα

)]
. (17c)

To avoid an unnecessary digression, we define and discuss the functions πnm
and τnm in appendix A.

Substituting the expansions of equations (17) into equation (5) allows Bohren’s
result to be rewritten as

E = Einc
∞∑
n=1

n∑
m=−n

in
2n+ 1

n(n+ 1)

[
ψamnN

(3)A

mn + ψbmnM
(3)A

mn

]
, (18a)

where
ψamn ≡ i (anfemn − dnfomn) , (18b)

ψbmn ≡ cnfemn − bnfomn. (18c)
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The aperture is located in the far field of the sphere. In the far-field approx-
imation, zn ≡ h(1)

n (kr)→ (−i)n+1 exp(ikr)
kr

gives the result that

(
M

(3)A

mn

N
(3)A

mn

)
= (−i)n exp(ikr) exp(imφA)

kr[
θ̂
A
(
πnm(cos θA)

τnm(cos θA)

)
+ iφ̂

A
(
τnm(cos θA)

πnm(cos θA)

)]
. (19)

Substituting equations (18) into equations (14) and the results into equation
(2a) where the integrations over 0 ≤ φA ≤ 2π are performed gives the result
that (

〈V Stokes〉
〈IStokes〉

)
=

2π

∆Ω

∞∑
n=1

∞∑
n
′
=1

(2n+ 1)(2n
′
+ 1)

n(n+ 1)n′(n′ + 1)

min(n,n′)∑
m=−min(n,n′)[(

−ψcrossnn′m

ψdotnn′m

)
I
dot

nn′m +

(
−ψdotnn′m

ψcrossnn′m

)
I
cross

nn′m

]
, (20a)

where ∆Ω = 2π(cos θAmin − cos θAmax), and

ψdotnn′m ≡ ψamnψ
a∗
mn
′ + ψbmnψ

b∗
mn
′ , (20b)

ψcrossnn′m ≡ ψamnψ
b∗
mn
′ + ψbmnψ

a∗
mn
′ , (20c)

I
dot

nn′m ≡
∫ µmin

µmax

dµF dot
nn′m(µ), (21a)

I
cross

nn′m ≡
∫ µmin

µmax

dµF cross
nn′m(µ), (21b)

where µmin ≡ cos(θAmin), µmax ≡ cos(θAmax), and

F dot
nn′m(µ) ≡ πnm(µ)πn′m(µ) + τnm(µ)τn′m(µ), (21c)

F cross
nn′m(µ) ≡ πnm(µ)τn′m(µ) + τnm(µ)πn′m(µ). (21d)
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Since I
dot

nn′,−m = I
dot

nn′m and I
cross

nn′,−m = −I
cross

nn′m, equation (20a) can be rewritten
as (

〈V Stokes〉
〈IStokes〉

)
=

π

∆Ω

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

Nm(2n+ 1)(2n′ + 1)

n(n+ 1)n′(n′ + 1)[(
−Ψ

(+)cross
nn′m

Ψ
(+)dot
nn′m

)
I
dot

nn′m +

(
−Ψ

(−)dot
nn′m

Ψ
(−)cross
nn′m

)
I
cross

nn′m

]
, (22a)

where Nm is the Neumann factor

Nm ≡ 1 if m = 0,

Nm ≡ 2 if m 6= 0,
(22b)

and
Ψ

(±)dot
nn′m ≡ ψdotnn′m ± ψdotnn′,−m, (22c)

Ψ
(±)cross
nn′m ≡ ψcrossnn′m ± ψcrossnn′,−m. (22d)

Equations (22) can be programmed to compute the most general case for
scattering of a linearly polarized incident wave.

4.2 Unpolarized Incident Wave

We obtained the solutions for an unpolarized incident wave from equations
(22) by averaging over angle α to produce

(
〈V Stokes〉

)U
=

π

∆Ω

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

Nm(2n+ 1)(2n′ + 1)(−1)

n(n+ 1)n′(n′ + 1)[(
Ψ

(+)cross
nn′m

)U
I
dot

nn′m +
(
Ψ

(−)dot
nn′m

)U
I
cross

nn′m

]
, (23a)

(
〈IStokes〉

)U
=

π

∆Ω

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

Nm(2n+ 1)(2n′ + 1)

n(n+ 1)n′(n′ + 1)[(
Ψ

(+)dot
nn′m

)U
Idotnn′m +

(
Ψ

(−)cross
nn′m

)U
I
cross

nn′m

]
, (23b)
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where

(f(αβγ))U ≡
∫ 2π
α=0 dα f(αβγ)

2π
. (23c)

Averaging the Ψ functions with respect to angle α gives(
Ψ

(+)cross

nn
′m

)U
=

[
4

(2n+ 1)(2n′ + 1)

]
i
1

2

[
C

(+)cross
nn′ − C(+)cross∗

n′n

]
F dot
nn′m(cos β), (24a)

(
Ψ

(−)dot

nn
′m

)U
=

[
4

(2n+ 1)(2n′ + 1)

]
i
1

2

[
C

(−)dot

nn
′ − C(−)dot∗

n′n

]
F cross
nn′m(cos β), (24b)

(
Ψ

(+)dot

nn
′
m

)U
=

[
4

(2n+ 1)(2n′ + 1)

]
1

2

(
C

(+)dot

nn
′ + C

(+)dot∗
n′n

)
F dot
nn′m(cos β), (24c)

(
Ψ

(−)cross

nn
′
m

)U
=

[
4

(2n+ 1)(2n′ + 1)

]
1

2

(
C

(−)cross

nn
′ + C

(−)cross∗
n′n

)
F cross
nn′m(cos β), (24d)

where
C

(+)cross
nn′ = 2(anc

∗
n′ + dnb

∗
n′), (25a)

C
(−)dot

nn
′ ≡ 2(dna

∗
n′ + bnc

∗
n′), (25b)

C
(+)dot

nn
′ ≡ (ana

∗
n′ + bnb

∗
n′ + cnc

∗
n′ + dnd

∗
n′) , (25c)

C
(−)cross

nn
′ ≡ 2 (anb

∗
n′ − dnc∗n′) . (25d)

Interchanging n and n′ (a standard symmetry operation) in the C∗n′n terms

and noting that F cross
nn′m(cos β), F dot

nn′m(cos β), I
dot

nn′m, and I
dot

nn′m are unchanged
after this operation allows equations (23) to be rewritten as
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(
〈V Stokes〉

)U
=

4π

∆Ω

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

×
Nm

[
Im
(
C

(+)cross
nn′

)
F dot
nn′m(cos β)I

dot

nn′m + Im
(
C

(−)dot
nn′

)
F cross
nn′m(cos β)I

cross

nn′m

]
n(n+ 1)n′(n′ + 1)

, (26a)

(
〈IStokes〉

)U
=

4π

∆Ω

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

×
Nm

[
Re
(
C

(+)dot
nn′

)
F dot
nn′m(cos β)I

dot

nn′m + Re
(
C

(−)cross
nn′

)
F cross
nn′m(cos β)I

cross

nn′m

]
n(n+ 1)n′(n′ + 1)

. (26b)
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5. Reduction for Scattering into a Solid Angle

4π Steradians

We have investigated experimental configurations collecting almost all the
scattered light. The light is scattered into a solid angle ∆Ω of approximately
4π sr (i.e., θAmin = 0 and θAmax = π radians = 180◦). The average Stokes
parameters can be calculated for this case without the added complication
of a beam coordinate system and Euler angles. However, the mathematical
technique required for the simplification of equations (22) and (26) when
∆Ω = 4π sr may be of interest to theorists who use angular momentum
theory. The result must be independent of the Euler angles since all the
scattered light is collected. Further, the results for linearly polarized and
unpolarized incident waves must be identical.

5.1 Linearly Polarized Incident Wave

Mathematically, the simplification of equations (22) and (26) occurs because[
I
dot

nn′m

]µmin=1

µmax=−1
= n(n+ 1)δnn′ and

[
I
cross

nn′m

]µmin=1

µmax=−1
= 0 as indicated by Arfken

[22] and appendix C. The result is that

[
〈V Stokes〉

]
∆Ω=4π

=
∞∑
n=1

(2n+ 1)2

4n(n+ 1)
(−1)

n∑
m=0

NmΨ(+)cross
nnm , (27a)

[
〈IStokes〉

]
∆Ω=4π

=
∞∑
n=1

(2n+ 1)2

4n(n+ 1)

n∑
m=0

NmΨ(+)dot
nnm . (27b)

With equation (D-3) derived in appendix D, it is not difficult to show that

(−1)
n∑

m=0

NmΨ(+)cross
nnm =

4n(n+ 1)

(2n+ 1)
Im [anc

∗
n + dnb

∗
n] , (28a)

n∑
m=0

NmΨ(+)dot
nnm =

1

2

4n(n+ 1)

(2n+ 1)

[
|an|2 + |bn|2 + |cn|2 + |dn|2

]
. (28b)
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These expressions give

[
〈V Stokes〉

]
∆Ω=4π

=
∞∑
n=1

(2n+ 1)Im [anc
∗
n + dnb

∗
n] , (29a)

[
〈IStokes〉

]
∆Ω=4π

=
1

2

∞∑
n=1

(2n+ 1)
[
|an|2 + |bn|2 + |cn|2 + |dn|2

]
. (29b)

These are the average Stokes parameters for scattering from a linearly po-
larized incident wave into 4π sr.

The scattering efficiency Qscattering is connected to
[
〈IStokes〉

]
∆Ω=4π

, as we can

see by comparing their definitions and observing that

Qscattering =
4

(ka)2

[
〈IStokes〉

]
∆Ω=4π

. (30a)

This gives the result that

Qscattering =
2

(ka)2

∞∑
n=1

(2n+ 1)
[
|an|2 + |bn|2 + |cn|2 + |dn|2

]
. (30b)

If there is no optical activity, then an = aMie
n , bn = bMie

n , and cn = dn = 0, so
that the conventional expression for Mie scattering efficiency is obtained.

5.2 Unpolarized Incident Wave

For the unpolarized wave scattering into ∆Ω = 4π sr,[
I
dot

nn′m

]µmin=1

µmax=−1
= n(n+ 1)δnn′ and[

I
cross

nn′m

]µmin=1

µmax=−1
= 0

give

(
〈V Stokes〉

)U
∆Ω=4π

=
∞∑
n=1

Im
(
C(+)cross
nn

)
n(n+ 1)

n∑
m=0

NmF
dot
nnm(cos β), (31a)

(
〈IStokes〉

)U
∆Ω=4π

=
∞∑
n=1

Re
(
C(+)dot
nn

)
n(n+ 1)

n∑
m=0

NmF
dot
nnm(cos β). (31b)
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With the expressions given in appendix D, it is found that

n∑
m=0

NmF
dot
nnm(cos β) =

1

2
n(n+ 1)(2n+ 1), (32)

so that (
〈V Stokes〉

)U
∆Ω=4π

=
1

2

∞∑
n=1

(2n+ 1) Im
(
C(+)cross
nn

)
, (33a)

(
〈IStokes〉

)U
∆Ω=4π

=
1

2

∞∑
n=1

(2n+ 1) Re
(
C(+)dot
nn

)
, (33b)

showing that (
〈V Stokes〉

)U
∆Ω=4π

=
(
〈V Stokes〉

)
∆Ω=4π

, (34a)(
〈IStokes〉

)U
∆Ω=4π

=
(
〈IStokes〉

)
∆Ω=4π

. (34b)
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6. False Signal

In sections 3.1 and 3.2, we show that the term “false signal” (of optical
activity) is equivalent to a nonzero measurement of 〈V Stokes〉 for scattering
from an optically inactive particle for which cn = −dn = 0.

For a linearly polarized incident wave (sect. 3.1), we show that there is no
false signal for aperture locations such that α = 0 or π/2; i.e., 〈V Stokes〉 = 0
for scattering from a spherical particle with no optical activity when the
aperture is centered in the x-z plane or in the y-z plane. We can also obtain
this result by analyzing equation (22a). If α = 0 or π/2, or if β = 0 or π,

then Ψ
(+)cross
nn′m = Ψ

(−)dot
nn′m = 0 for optically inactive spherical particles, so that

equation (22a) gives the result that 〈V Stokes〉 = 0.

For an unpolarized incident beam, C
(+)cross
nn′ = C

(−)dot
nn′ = 0 for optically inac-

tive spheres, so that equation (26a) gives the result (〈V Stokes〉)U = 0. As in
section 3.2, our results show that there is no false signal for an unpolarized
incident beam.
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7. Numerical Calculations

In this section, we give the results of some computations for the benefit of
computational researchers who wish to verify computer programs that they
develop with the theory given here. Using Mie theory, Bohren and Huffman
give computed values of aMie

n and bMie
n for Re(N̂) = 1.33, Im(N̂) = 1.0(10−8),

and the Mie size parameter X ≡ πD/λ = 3.0. All the computations given
here are for an optically active sphere with X ≡ 3.0, Re(N̂L) = 1.33,
Im(N̂L) = 2.0(10−8), Re(N̂R) = 1.33, and Im(N̂R) = 0. For these values,
the resulting computed values of an, bn, and cn are given in table 1.

7.1 Aperture Centered on the Beam Axis

In tables 2, 3, and 4, computations of P effective , 〈V Stokes〉, and 〈IStokes〉 are
given for scattering into a sensor aperture centered on the beam axis (α =
β = 0◦). For this particular aperture location, the results are identical for
polarized and unpolarized incident beams.

Table 2 is for an aperture with beam block for which θmin = 5◦ and θmax =
60◦. We did these computations with the numerical integration scheme, giving

Table 1. Computed values of an, bn, and cn.

n Re(an) Im(an) Re(bn) Im(bn)

1 0.516306(100) −0.499734(100) 0.737672(100) −0.439900(100)

2 0.341921(100) −0.474353(100) 0.400793(100) −0.490059(100)

3 0.484668(10−1) −0.214750(100) 0.935528(10−2) −0.962692(10−1)

4 0.103458(10−2) −0.321483(10−1) 0.688105(10−4) −0.829491(10−2)

5 0.903755(10−5) −0.300622(10−2) 0.283089(10−6) −0.532042(10−3)

n Re(cn) Im(cn)

1 −0.265630(10−7) −0.717984(10−8)

2 −0.261447(10−7) 0.697491(10−8)

3 −0.202011(10−8) 0.611957(10−8)

4 −0.268083(10−10) 0.662132(10−9)

5 −0.186204(10−12) 0.526254(10−10)
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Table 2. P effective , 〈V Stokes〉, and 〈IStokes〉 for α = β = 0, θmin = 5◦, and θmax = 60◦;
computed with numerical integration method with identical results for polarized and un-
polarized incident waves.

Number
of circles

Number
of points

P effective 〈V Stokes〉 〈IStokes〉

2 16 0.534274(10−7) 0.540146(10−6) 0.101099(102)

4 64 0.499270(10−7) 0.700091(10−6) 0.140223(102)

6 128 0.496561(10−7) 0.708648(10−6) 0.142711(102)

8 256 0.496438(10−7) 0.708921(10−6) 0.142802(102)

10 400 0.496434(10−7) 0.708928(10−6) 0.142804(102)

12 576 0.496434(10−7) 0.709932(10−6) 0.142805(102)

14 784 0.496434(10−7) 0.708928(10−6) 0.142804(102)

Table 3. P effective , 〈V Stokes〉, and 〈IStokes〉 for α = β = 0, θmin = 0, and θmax as indicated;
computed with analytical method with identical results for polarized and unpolarized
incident waves.

θmax (◦) P effective 〈V Stokes〉 〈IStokes〉
60 0.495059(10−7) 0.717150(10−6) 0.144861(102)

120 0.516809(10−7) 0.268489(10−6) 0.519513(101)

180 0.517047(10−7) 0.203983(10−6) 0.394514(101)

results for an increasing number of points to demonstrate the convergence of
this method. The results given in the bottom row of table 2 were found to
agree exactly with those given by the analytical method.

In table 3, computed values of P effective , 〈V Stokes〉, and 〈IStokes〉 are given for
θmin = 0◦ and θmax as indicated. These computations were made with the
analytical method. The values of table 3 for θmax = 60◦ were verified with
the numerical integration method, and the computations for θmax = 180◦

were verified with the specialized analytical result for scattering into 4π sr.
Exact agreement was obtained in each case.

7.2 Off-Axis Aperture Locations

An off-axis aperture location was chosen with α = 30◦ and β = 60◦. In table 4,
computations of P effective , 〈V Stokes〉, and 〈IStokes〉 are given for θmin = 0◦ and
θmax as indicated. The computations of table 4a are for a polarized incident
wave, and the computations of table 4b are for an unpolarized incident wave.
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Table 4. P effective , 〈V Stokes〉, and 〈IStokes〉 for an incident wave scattering into aperture
with α = 30◦, β = 60◦, θmin = 0◦, and θmax as indicated; computed with analytical
method: (a) polarized and (b) unpolarized.

(a)

θmax (◦) P effective 〈V Stokes〉 〈IStokes〉
60 −0.434718(10−2) −0.298083(10−1) 0.685693(101)

120 −0.223394(10−2) −0.114976(10−1) 0.514676(101)

180 0.517047(10−7) 0.203983(10−6) 0.394514(101)

(b)

θmax (◦) P effective 〈V Stokes〉 〈IStokes〉
60 0.508052(10−7) 0.349986(10−6) 0.688877(101)

120 0.512351(10−7) 0.263510(10−6) 0.514315(101)

180 0.517047(10−7) 0.203983(10−6) 0.394514(101)

The values in these tables were computed with a Cray and a desktop per-
sonal computer. All results given by these two computers agreed except for
the values of P effective and 〈V Stokes〉 obtained for table 4a for θmax = 180◦. The
results given by the personal computer were incorrect in this case because
of a lack of precision. Since many computations are performed on personal
computers, we considered it important to explain this discrepancy. The spe-
cialized result for 〈V Stokes〉 obtained for scattering into 4π sr follows from the
observation that

−1

4

n∑
m=0

NmΨ(+)cross
nnm =

n∑
m=0

Nm|femn|2Im(anc
∗
n) +

n∑
m=0

Nm|fomn|2Im(dnb
∗
n)

−
n∑

m=0

NmRe[femnf
∗
omn][Im(dnc

∗
n) + Im(anb

∗
n)]. (35)

The difficulty arises when
∑n
m=0 NmRe [femnf

∗
omn] is not exactly zero because

this factor is multiplied by Im(anb
∗
n) where an and bn are much larger than

dn = −cn. Although we found theoretically that
∑n
m=0 NmRe [femnf

∗
omn] =

0, the limited precision of personal computers is such that if each term of
Re [femnf

∗
omn] is not exactly zero, then the sum differs from zero enough to

give an erroneous result when multiplied by Im(anb
∗
n). The difficulty does not

arise when high-precision machines like Cray computers are used or when a
personal computer is used with the factor Re [femnf

∗
omn] = 0 in each term.
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This factor is zero if α = 0 or π/2, and it is also zero if β = 0 or π. Using these
aperture positions corresponds to elimination of the false signal as discussed
in section 6.
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8. Summary

The objective of the research initiated earlier [11] was to develop a method for
identifying optically active spheres by analyzing light scattered from a laser
beam into a circular sensor aperture. We claimed that this could be done by
computing the effective degree of circular polarization for apertures located
in certain positions that generate no false signal of optical activity, and these
positions were identified. Here, we prove this claim, and two methods for
performing the necessary computations are developed and discussed.

We used Bohren’s theory for light scattering by an optically active sphere as
a starting point to develop the two methods given here, which average Stokes
parameters over a circular sensor aperture located in any desired direction
from the scattering sphere. The effective degree of circular polarization is
defined as the ratio of two averaged Stokes parameters.

One method is based on a two-dimensional numerical integration scheme that
explicitly shows the connection with Mueller matrix elements; this method is
referred to as the numerical integration method. The other method is based
on expansions of vector spherical harmonics and is referred to as the analyti-
cal method. The advantages and disadvantages of each method are discussed.
For a dedicated programmer with a fast computer, the analytical method is
preferred since it can treat apertures of any size without convergence checks.
Either method can treat both polarized and unpolarized incident beams.
Equations are derived that allow reduction of the general analytical expres-
sions in the special case of scattering into 4π sr. Several tables of numerical
results are given to facilitate the verification of computer codes, and we dis-
cuss potential computational difficulties with personal computers because of
a lack of precision. We pointed out that these difficulties do not arise when
the aperture is located in a position that generates no false signal. Mathemat-
ical details related to special functions, expansions, integrals, and reductions
are given in four appendices.
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Appendix A. Definition and Computation of the πnm
and τnm Functions

The πnm(µ) and τnm(µ) functions are defined here as

πnm(µ) ≡ mP nm(µ)√
1− µ2

, (A-1a)

τnm(µ) ≡ −
√

1− µ2(d/dµ)P nm(µ), (A-1b)

where P nm(µ) is the normalized associated Legendre function as defined by
Belousov [25] so that

P nm(µ) ≡ AmnPnm(µ), (A-1c)

where Pnm(µ) = (1− µ2)m/2 dm

dµm
Pn(µ) is the unnormalized associated Legen-

dre function as defined by Arfken [22] and Stratton [26] and used in standard
light scattering references by Bohren and Huffman [1] and van de Hulst [23].
These Legendre functions differ by a factor of (−1)m from the Legendre func-
tions used by Jackson [20], Abramowitz and Stegun [27], and Gradshteyn and
Ryzhik [28]. These last two references are of particular interest for their ex-
tensive recursion relations, but care must be exercised because of the (−1)m

factor difference. The πnm and τnm functions are defined here to agree with
Fuller’s definitions [29] except with an additional factor of Amn. There is
a computational advantage to using normalized Legendre functions because
the factorials in Amn do not have to be computed separately but are easily in-
corporated into the recursion relations. Also, for negative values of m, the re-
sulting functions are P n,−m(µ) = (−1)mP nm(µ), πn,−m(µ) = (−1)m+1πnm(µ),
and τn,−m(µ) = (−1)mτnm(µ). These relations are simpler than those using
the unnormalized Legendre functions.

We can conveniently conpute the πnm(µ) and τnm(µ) functions using relations
obtained by rewriting equation (8.733.1) given by Gradshteyn and Ryzhik
[28] as
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 µπnm(µ)

τnm(µ)

 =

(
1

2

)[√
(n−m+ 1)(n+m)P n,m−1(µ)

{±}
√

(n+m+ 1)(n−m)P n,m+1(µ)
]
. (A-2a)

If µ = 1, then P nm(1) =
√

(2n+ 1)/2δm,0 gives the result

 πnm(1)

τnm(1)

 =
1

2

√
(2n+ 1)n(n+ 1)

2
(δm,1 {±} δm,−1). (A-2b)

It is helpful to realize that this expression may be rewritten as

 πnm(1)

τnm(1)

 =
A1,nn(n+ 1)

2
(δm,1 {±} δm,−1)

=
(2n+ 1)

4A1,n

(δm,1 {±} δm,−1). (A-2c)
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Appendix B. Expansion of the Vector Spherical

Harmonics

The expansion of Jackson’s vector spherical harmonic can be written as [16]

XnM =
n∑

m=−n
Dn∗
M,m(αβγ)XA

nm, (B-1a)

where Xnm = Xnm(θ, φ), XA
nm = XA

nm(θA, φA), and

Dn∗
M,m(αβγ) = exp(imα)dnM,m(β) exp(imγ). (B-1b)

Comparing the definitions of M
(3)

mn and Xnm gives M
(3)

mn =
√

2πn(n+ 1)

(−1)m+1iznXnm so that equation (B-1a) can be used to obtain the relation

M
(3)

±1,n =
n∑

m=−n
Dn∗
±1,m(αβγ)(−1)m+1M

(3)A

mn , (B-2a)

where
Dn∗
±1,m(αβγ) = exp(±iα)dn±1,m(β) exp(imγ), (B-2b)

dn±1,m(β) =

√
2

n(n+ 1)(2n+ 1)
[πnm(cos β)± τnm(cos β)] . (B-2c)

The equations

M
(3)

emn =
[
M

(3)

mn + (−1)mM
(3)

−m,n

]
/2, (B-3a)

M
(3)

omn =
[
M

(3)

mn − (−1)mM
(3)

−m,n

]
/(2i) (B-3b)

(with m = 1), and equation (B-2) then give

M
(3)

σ1n = A1n

n∑
m=−n

fσmnM
(3)A

mn , (B-4)

which can be rewritten as equations (17a) and (17b) with the expansion
coefficients fσmn given by equation (17c).
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Appendix C. Evaluation of I
dot
nn′m and I

cross
nn′m

The theory of evaluating the integrals I
dot

nn′m and I
cross

nn′m was mainly done by
Chu and Robinson [15] with a later contribution by Son, Farmer, and Giel
[18]. The results are listed here in the notation of this report for the conve-
nience of the reader, with a few comments concerning proof of the results.

By differentiating both sides of the equation, we easily show that

I
cross

nn′m =
[
−mP nm(µ)P nm(µ)

]µmin

µmax
. (C-1)

For what follows, it is helpful to rewrite the differential equation for the
associated Legendre function as

d

dµ

(√
1− µ2τnm(µ)

)
= n(n+ 1)P nm(µ)− mπnm(µ)√

1− µ2
. (C-2)

With this result, we can easily show (by differentiating both sides) that if
n 6= n′, then

I
dot

nn′m =

[
(−1)

[n(n+ 1)P nm(µ)
√

1− µ2τn′m(µ)− n′(n′ + 1)P n′m(µ)
√

1− µ2τnm(µ) ]

[n(n+ 1)− n′(n′ + 1)]

]µmin

µmax

.

(C-3)

If n = n′, then the recursion relation

I
dot

nnm =
[
(−1)P nm(µ)

√
1− µ2τnm(µ)

]µmin

µmax

+ n(n+ 1)Innm, (C-4a)

is obtained in the same way and used with

Innm ≡
∫ µmin

µmax

dµ
(
P nm(µ)

)2
(C-4b)

an integral computed with the supplemental recursion relation

Innm =

P nm(µ)
√

1− µ2P n,m−1(µ)√
(n+m)(n−m+ 1)

µmin

µmax

+ Inn,m−1. (C-4c)

Equation (C-4c) can be proved with the help of a relation, P n,m−1(µ) =

(µπnm(µ) + τnm(µ)) /
√

(n+m)(n−m+ 1), obtained from equation (A-2a).
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Appendix D. Equations Giving Reduction for

Scattering into 4π Steradians

Equations required to demonstrate the simplification that occurs for scat-
tering into 4π sr can be obtained in the following way: if α = γ = 0 and

β º 0 and if θ = φ = 0, then θA = β and φA = π while θ̂ = −θ̂A = x̂ and

φ̂ = −φ̂A = ŷ. Substituting this set of conditions into equation (B-4) and
using πn,1(1) = τn,1(1) = A1nn(n+ 1)/2 from equation (A-2c) gives

n∑
m=−n

[πnm(cos β)]2 =
n∑

m=−n
[τnm(cos β)]2 =

1

4
n(n+ 1)(2n+ 1), (D-1a)

n∑
m=−n

πnm(cos β)τnm(cos β) = 0. (D-1b)

Equation (D-1a) can be rewritten as

n∑
m=0

Nm[πnm(cos β)]2 =
n∑

m=0

Nm[τnm(cos β)]2 =
1

4
n(n+ 1)(2n+ 1), (D-2)

where Nm is the Neumann factor introduced in equation (22b). With these
results, it is easy to show that

n∑
m=0

Nm|femn|2 =
n∑

m=0

Nm|fomn|2 = n(n+ 1)/(2n+ 1), (D-3a)

n∑
m=0

NmRe(femnf
∗
omn) = 0. (D-3b)

Since πn,−m(µ) = (−1)m+1πnm(µ) and τn,−m(µ) = (−1)mτnm(µ), it is easy to
show that fσ,−m,n = (−1)mf ∗σmn. With this expression and equation (D-3), it
is easy to obtain equations (28).
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